CNC 밀링 및 터닝: 귀하의 프로젝트에 적합한 프로세스는 무엇입니까?
CNC 밀링(로터리 커터 사용)과 터닝(절단 도구 사용)은 가공 형태입니다. 그러나 그들은 다른 방식으로 재료를 제거합니다. 밀링 공정에서는 회전 도구를 사용하여 재료를 제거하는 반면, 선삭 공정에서는 절삭 장비에 대해 공작물을 회전시키는 작업이 포함됩니다. 이러한 차이로 인해 기능과 응용 프로그램이 달라집니다.
우리는 정기적으로 제조업과 관련된 기사를 업데이트합니다.
CNC 밀링(로터리 커터 사용)과 터닝(절단 도구 사용)은 가공 형태입니다. 그러나 그들은 다른 방식으로 재료를 제거합니다. 밀링 공정에서는 회전 도구를 사용하여 재료를 제거하는 반면, 선삭 공정에서는 절삭 장비에 대해 공작물을 회전시키는 작업이 포함됩니다. 이러한 차이로 인해 기능과 응용 프로그램이 달라집니다.
구조용 강철 제조는 원시 강철을 건물 및 구조물용 조립 준비가 완료된 프레임으로 변환하는 복잡한 프로세스입니다. 이 과정에는 강재를 절단하고, 구부리고, 조립하여 견고하고 신뢰할 수 있는 뼈대를 만드는 데 필수적인 다양한 모양과 크기를 만드는 과정이 포함됩니다.
냉간 스탬핑은 냉간 성형이라고도 알려져 있습니다. 상온에서 금속판을 원하는 모양으로 성형하는 금속 가공 기술입니다. 금속을 금형 세트에 밀어넣는 데 고압이 사용되어 가열하지 않고도 복잡한 부품을 제작할 수 있습니다. 비용 효율성과 속도로 인해 자동차, 전자 등 산업 분야에서 인기가 높습니다.
철은 부식과 녹이 발생하기 쉬운 무겁고 튼튼한 원소입니다. 강철은 철과 탄소의 혼합물이며 때로는 다른 원소와 결합하여 특성을 향상시킵니다. 이 혼합물로 인해 강철은 순철보다 부식에 더 강하고 내구성이 더 좋습니다.
클라임 밀링에서는 커터의 회전과 일치하는 방향으로 공작물을 이송하는 작업이 포함됩니다. 절삭력이 공작물에 직접 전달되므로 절삭이 더 부드러워지고 공구 마모가 줄어듭니다. 또는 밀링에서는 일반적으로 커터 회전과 반대 방향으로 공작물을 이송합니다. 이로 인해 절삭력이 높아지고 떨림 현상이 발생할 수 있습니다.
리벳팅에는 금속 핀을 사용하여 부품을 서로 고정하는 작업이 포함되는데, 이는 열을 수반하지 않으므로 열 변형이 문제가 되는 프로젝트에 탁월합니다. 반대로 용접은 금속 부품을 함께 녹여 응력이 높은 응용 분야에 이상적인 견고하고 매끄러운 결합을 제공합니다. 프로젝트의 결과는 용접 또는 리벳팅의 선택에 따라 크게 영향을 받을 수 있습니다.
패드 프린팅은 2D 그림을 3D 개체로 전송하는 것입니다. 공정은 실리콘판과 패드를 이용한 간접옵셋인쇄 방식입니다. 실리콘 패드는 판에서 잉크를 떼어내고 물체에 누릅니다.
아노다이징은 금속 표면에 보호 산화물 층을 생성하여 뛰어난 내구성과 내식성을 제공합니다. 알루미늄 부품에 이상적이며 심미성과 기능성을 모두 향상시킵니다. 분체 도장은 다양한 색상과 질감으로 더 두꺼운 마감을 제공하며 강철 및 알루미늄과 같은 다양한 금속에 적합합니다. 각 방법에는 장점이 있으며 특정 요구 사항에 따라 다릅니다.
레이저 절단 비용은 재료, 두께, 디자인의 복잡성, 총 절단 시간 등 여러 요인에 따라 달라집니다. 먼저 사용할 재료의 비용을 고려해야 합니다. 다양한 재료의 비용은 다양하며 재료가 두꺼운 경우 절단에 필요한 시간이 늘어납니다.
스폿 용접 기술은 전류를 사용하여 금속 시트를 가열하고 융합합니다. 이 공정에는 짧은 시간 동안 압력과 전류를 가하는 전극 사이에 금속 시트를 배치하는 작업이 포함됩니다. 금속의 저항은 열을 발생시켜 녹입니다. 전극의 압력으로 인해 용융된 금속 풀이 냉각되어 견고한 결합을 형성합니다.
정밀도를 유지하면서 금속의 무결성을 유지하는 방법을 사용하여 티타늄을 절단하는 것이 가장 좋습니다. 워터젯 기술, 레이저 절단 및 CNC 가공은 모두 매우 효과적입니다. 예를 들어 워터젯 절단은 열로 인한 변형을 방지하기 위해 냉간 절단 공정을 사용합니다.
스테인레스 스틸의 레이저 절단에는 원하는 절단 선을 따라 금속을 녹이는 집중된 레이저 빔이 포함됩니다. 레이저의 출력, 속도, 초점을 제어함으로써 깨끗하고 정밀한 절단이 가능합니다. 이 방법은 기존 절단 방법에 비해 효율적이며 정확도가 뛰어납니다.
샌드블래스트 산화알루미늄을 사용하여 알루미늄 표면을 처리하는 것은 직접적인 공정입니다. 처음에는 알루미늄 가공물에 불순물이 없는지 확인하십시오. 샌드블라스팅 장비를 샌드블래스트 산화알루미늄 매질로 준비하십시오. 일반적으로 입자가 미세하거나 중간 정도인 것으로 권장됩니다. 알루미늄의 두께에 따라 샌드블라스팅 장치의 압력 설정을 미세 조정하여 재료가 뒤틀리거나 손상되는 것을 방지하세요.
양극 처리된 알루미늄 위에 페인팅하려면 페인트가 접착되고 지속되도록 주의 깊은 준비가 필요합니다. 먼저 표면을 깨끗이 닦아 오염물질을 제거합니다. 그런 다음 금속용으로 설계된 프라이머, 특히 양극 처리된 표면에 적합한 프라이머를 사용하십시오. 이렇게 하면 페인트가 더 잘 붙는 데 도움이 되고 페인트 작업의 수명이 연장됩니다.
부드러운 비눗물과 물로 양극 산화 처리된 표면을 청소하십시오. 표면을 헹구고 건조시킵니다. 극세사 타월에 소량의 고품질 금속 광택제를 바르고 원을 그리듯 부드럽게 문지릅니다. 깨끗하고 마른 천을 사용하여 여분의 광택제를 제거하십시오. 실리콘 스프레이로 마무리하고 가볍게 버핑해 윤기를 더해줍니다.
맞춤형 금속 부품은 디자인에서 시작하여 정밀 가공으로 끝나는 세심한 공정을 통해 제작됩니다. 첫째, 엔지니어는 고급 소프트웨어를 사용하여 고객의 요구 사항을 충족하는 프로토타입을 모델링합니다. 이어서 레이저 절단, CNC 가공 또는 금속 스탬핑과 같은 다양한 제조 기술을 통해 원시 금속을 최종 제품으로 변환합니다.
저작권 @ 2023 Shengen. 판권 소유.
영업일 기준 1일 이내에 연락드리겠습니다. "@goodsheetmetal.com"이라는 접미사가 포함된 이메일을 주의 깊게 읽어보시기 바랍니다.